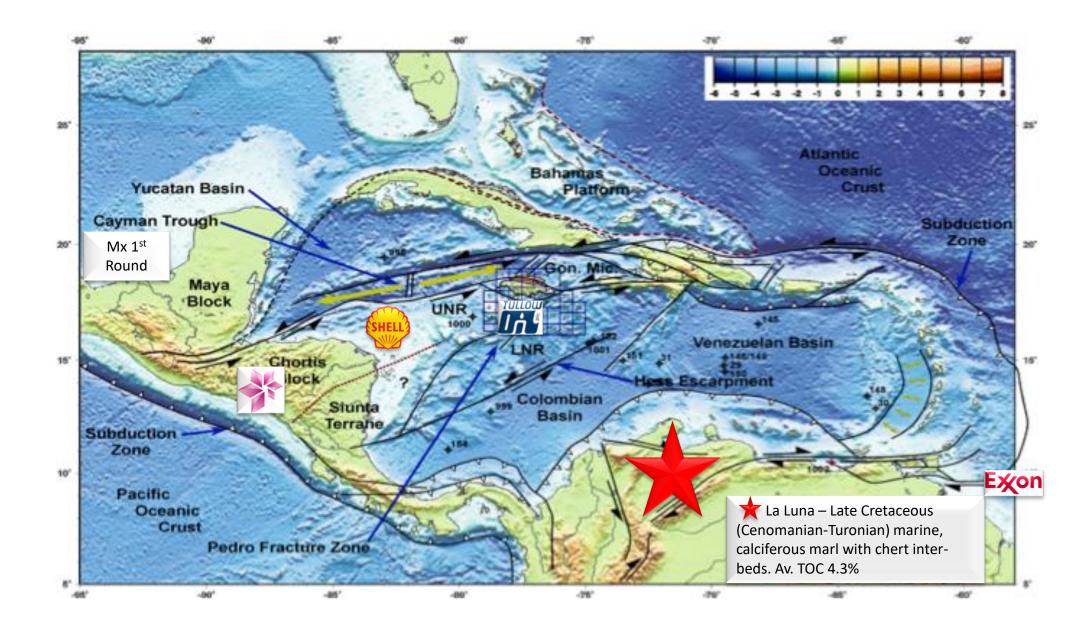
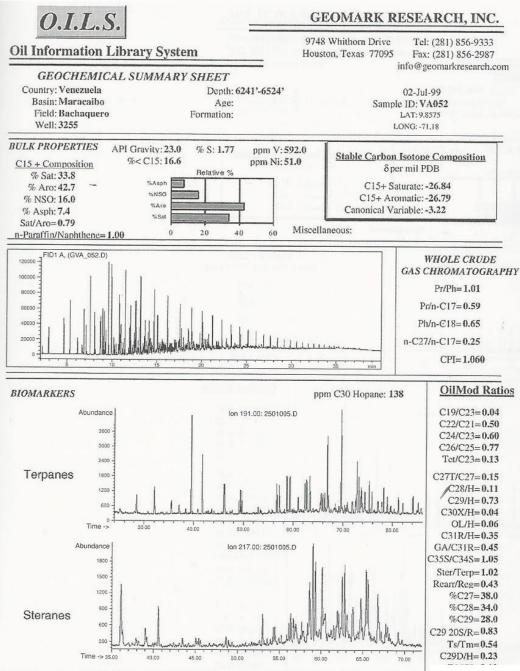
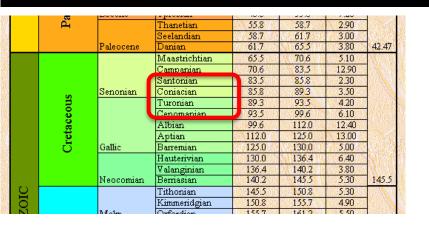
Caribbean Source Rocks & Oils

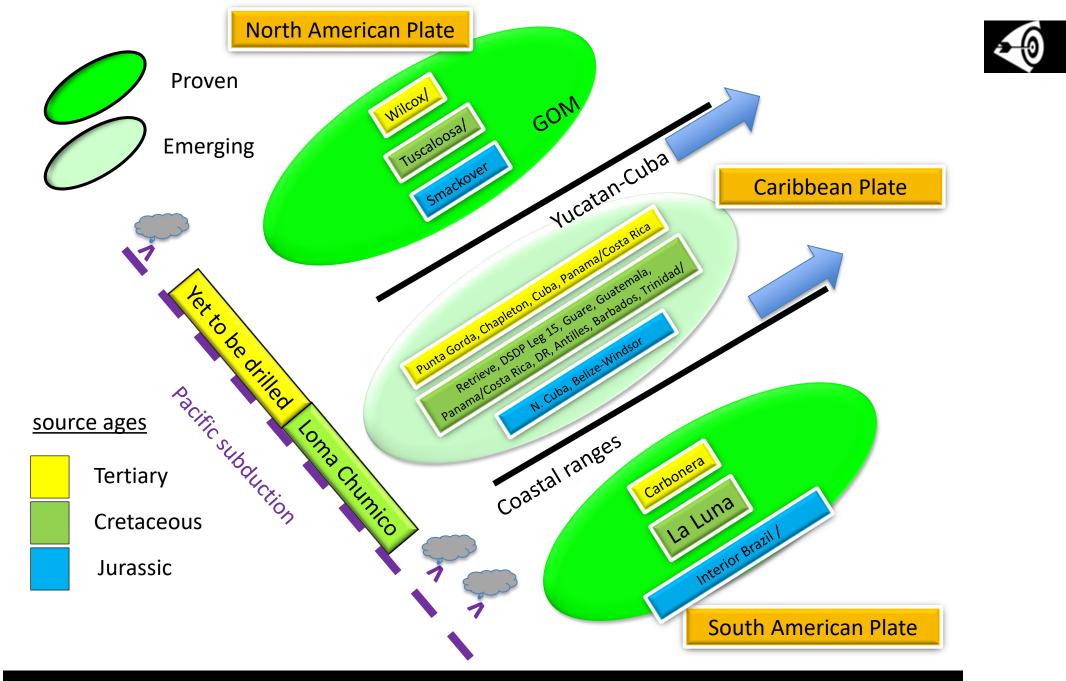
Brief: "Is there a regional play of some sort in the Caribbean?" Source rocks: "What's the distribution of the La Luna, is there an Albo-Aptian source rock?"

Finding Petroleum, Geological Society, London, October 21, 2016. Chris Matchette-Downes, CaribX Limited cjmd@caribx.com




North coast Cuba production Offshore Cuba exploration Dominican Republic oil seeps


Caribbean geological fabric

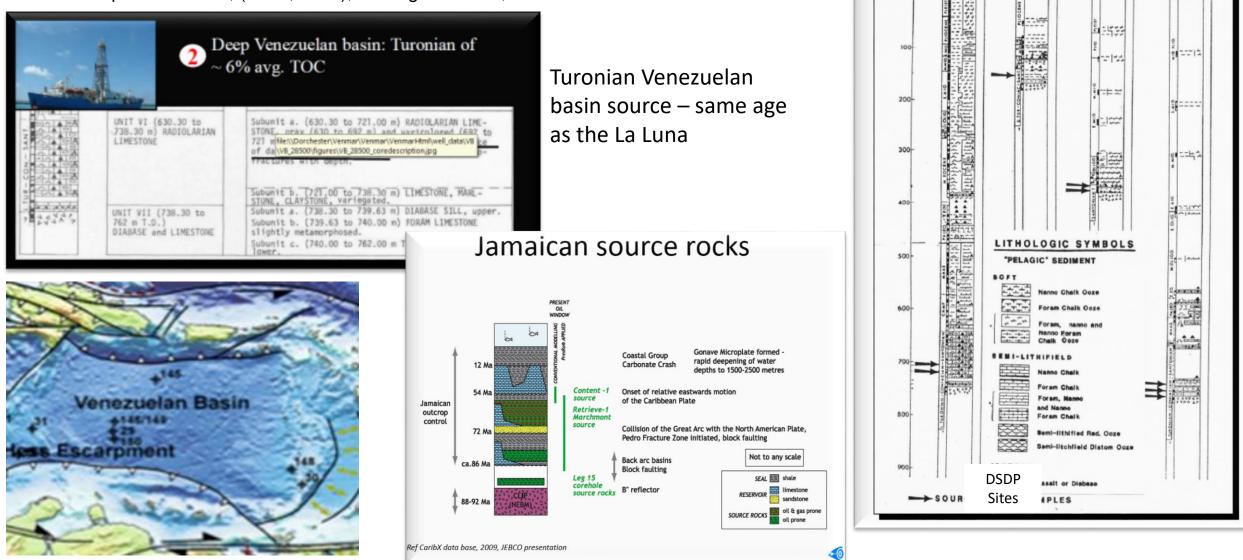


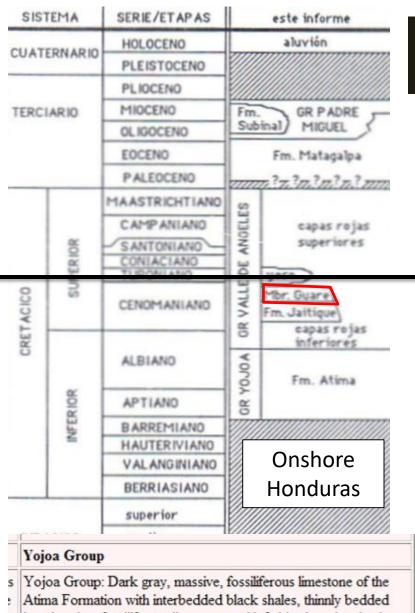
Bachaquero 3255– La Luna sourced oil

COMMENTS: Cenomanian/Turonian La Luna Carbonate

Caribbean principal region source regimes – CaribX 2009

Regional Cretaceous source rocks

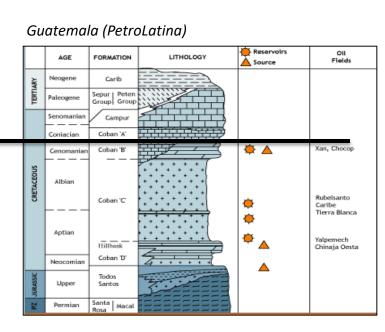

153


146/149

150

151

DSDP Leg 15 core holes drilled SE Jamaica (Sites 145, 146, 149, 150 & 153), Saunders et al., 1973. TOC peak at 11.1%, (Bode, 1973), HI range 114-535, δC^{13} av. -28‰



Atima Formation with interbedded black shales, thinnly bedded iron-bearing, fossiliferous limestones with fetid odor when broken and appears to be the Cantarranas Formation.

Honduras Group

The Cantarranas Formation is Albian and older

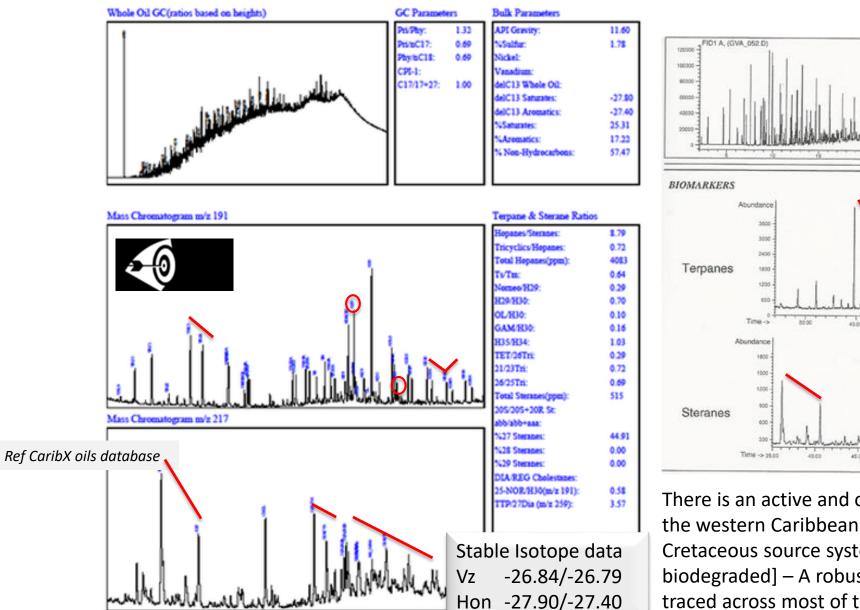
Honduran & Guatemalan Cretaceous sources

Jaitique Formation (Kj) and Guare (Kg)

Above the Valle de Angeles group rests a limestone unit composed of two members. The lowest member comprise of massive layers of dark limestone and fine layers of calcareous shale. Ocassionally these layers have the characteristic of becoming thin or thick producing ondulatory surfaces.

Above these carbonates the superior member is located, Guare member, which is recognized due to its thin layers of limestone and interlayered shale thin layers; it has a thickness of 100m approximately. These dark layers of limestone have the particularity of having an **oil smell when it is broken**. Additionally there are many occurrences where this formation is fractured, folded, and filled with gypsum veins.

YUC THE AND A THE ATHE AND A THE AND


46 Ma (Pindell and Kennan, 2009. figure 16)

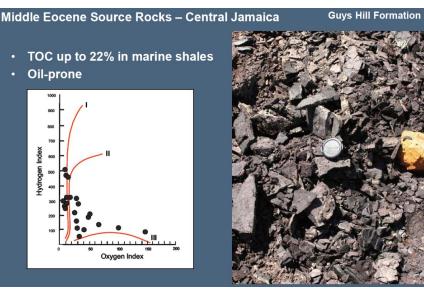
Guare Fm- fish beds. NE Honduras

Honduran vs. Venezuelan oil

GAS C. Pr Ph/ n-C27/ ppm C30 Hopane: 138 ion 191.00: 2501005.D 45.00 50.00 80.00 lon 217.00: 2501005.D 45.00 30.00 55.00 80.00 65.00 70.00

GC & m/z 191 & 217 Ion reconstructions, GeoMark Research. Ref. The Biomarker Guide, 2004

There is an active and obvious Tertiary source system working in the western Caribbean – however there also appears to be a Cretaceous source system. [The Honduran oil is very mature and biodegraded] – A robust Cretaceous source therefore can be traced across most of the Caribbean REGION SPELITH LARGRATORIES.ING. GEOCHEMICAL LOG Coco Marina-1 1.D: UNION ON COMPANY WILL NAME: No. 1 Coco Marine 0,897' (2,045 metera)

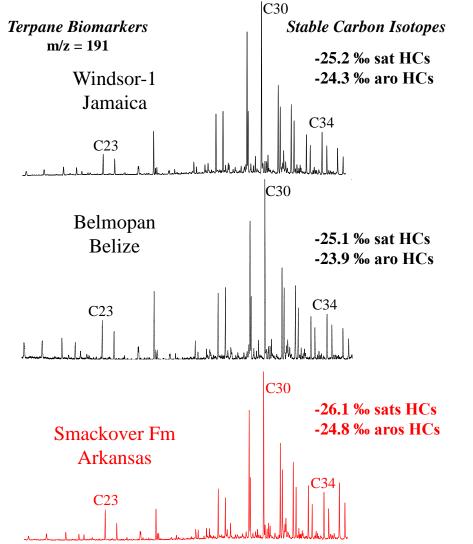

5			NON	DGV	SOURCE BED POTENTIAL				MATURITY		HY	DROCA	RBON			
USPTH L		AGE	FORMATION	птногосу		T.O.G. (w. 4)	ระ เกษณ 111 ไปประกับไลแม่ม	52/63	HYDROGEN INCEX	1	<u> </u>	,	\$1 mg/gs	. <u>\$1</u> \$1 + \$7		
ľ	·	4	ŭ	5				-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		A M	آيار	inisti	<u>đđư i</u>		
	dada.		-		Ļ					ן ו	•				Coco Ma	ЭI
·		and and	3		Ł					ŀ			.		Punta G	റ
	لماما				Ł											
	dial and	TO OUGOCENE	M060UT		ł										Formation	0
1000	- International Contraction	ě 10	ă.		ł	14 C				1		Ir	Da	nth (ma)	TOCO	Т
	a da teta	MIDCENE	KAL				<u> </u>	_	- I	ł		ŀ		pth (m) 1089	TOC%	╇
	data da				_			Ĩ	<u>19</u> -			N.		1149	1.17	
	der fait		5				here the	-				h		1216	0.51	
	100		A DORDA	-		-	0					4		1316	1.66	
	- And	LOCENE	PURTA											1332	9.39	+
	dial de	2				-				_				1338	3.57	+
	hulual		-		1	-					:			1399	0.99	+
	واللله		TOUCHE					-			i	LIN.		1436	6.83	+
***	-	so	ŕ	1-	È		E	-	2			Ē		1543	5.52	+
	- hada											lŀ		1564	7.16	$^+$
	la de la										:	lŀ		1603	15.32	$^{+}$
	dada.							ľ				lŀ		1627	0.84	t
	- Provinsion							· .	:					1671	5.58	t
	- Inder										:		1	1672	3.88	t
	- huhu												1	1678	0.81	t
	1											L	1	1691	6.66	t
						975			53 - CQ, 94		1	1706	1.79	T		
	CDA				DOFON			SI - Hydroc	arbens trom Kerbijen P	Poyes	Hydhogen ind -	Pet	1	1721	0.38	
Re	ef S	Eŀ	R٨	IA da	tak	pase							1	1737	1.16	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												1	1766	13.57	T
													1	1793	1.55	T
													1	1819	0.89	

Regional Tertiary source system

Ð

Coco Marina #1, (Honduras/Nicaragua) ~770m of world class source rocks – Punta Gorda Formation – also seen in Jamaica where it is called the Chapleton Formation[†] and in many Honduran/Nicaraguan wells eg Punta Gorda #1.

Depth (m)	TOC%	S1	S2	HI
1089	1.17	0.02	2.41	206
1149	1.73	0.12	2.73	158
1216	0.51	0.02	0.59	115
1316	1.66	0.42	5.16	311
1332	9.39	3.16	43.31	461
1338	3.57	1.17	16.06	450
1399	0.99	0.13	1.78	180
1436	6.83	2.09	17.92	262
1543	5.52	1.77	13.33	242
1564	7.16	2.92	21.38	299
1603	15.32	6.42	77.54	506
1627	0.84	0.10	0.45	54
1671	5.58	4.38	17.83	320
1672	3.88	2.65	11.59	299
1678	0.81	0.82	1.10	136
1691	6.66	3.54	21.62	325
1706	1.79	0.46	3.85	215
1721	0.38	0.04	0.32	84
1737	1.16	0.24	1.28	111
1766	13.57	5.43	38.75	290
1793	1.55	0.49	4.26	275
1819	0.89	0.18	0.9	101
1828	0.49	0.06	0.1	20



Ref CaribX Caribbean review / data base 2009-2015 – CJMD & PCJ field trip 2004

+ recently renamed

Jurassic source system

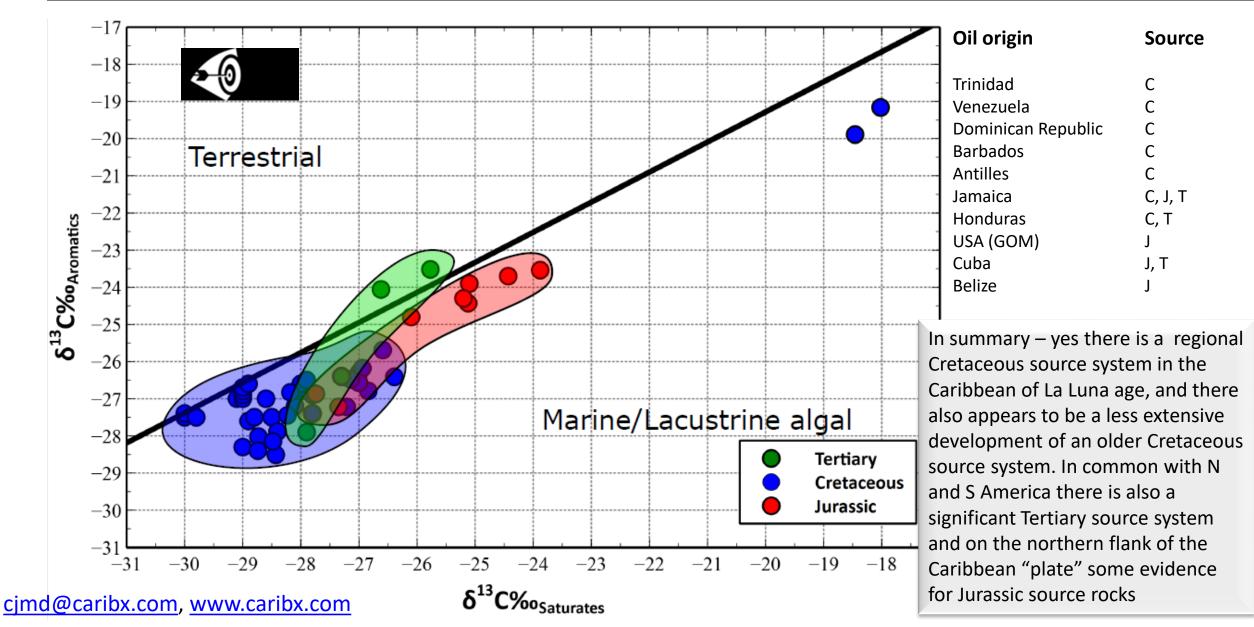
The Oxfordian Smackover Formation, USA is a prolific source rock in the Gulf of Mexico

The Caribbean does contain Jurassic source rocks, but in common with the GOM it also contains Cretaceous and Tertiary aged source rocks

Hydrocarbon Systems Analysis of the Northern Gulf of Mexico 29

 TABLE 1. Northern Gulf of Mexico Basin source intervals (ages), hydrocarbon families, and summary of established rock-oil ties.

Source interval	Oil types	Rock-oil tie				
Lower Tertiary (centered on Eocene)*	Tertiary Marine Tertiary Intermediate Tertiary Terrestrial	Tie with high-maturity core, south Louisiana Multiple-maturity suites (core), south-central Louisiana Offshore Texas (salt sheath)				
Upper Cretaceous (centered on Turonian)*	Marine—Low Sulfur—No Tertiary Influence	Direct ties with mature source rocks: Offshore—eastern Gulf of Mexico Onshore—Tuscaloosa trend, Louisiana and Mississippi; Giddings trend, Texas				
Lower Cretaceous	Carbonate—Elevated Salinity—Cretaceous	Direct ties with source rocks, South Florida Basin				
Undifferentiated Cretaceo	us	Calcareous—Undifferentiated Cretaceous Production from fractured Lower Cretaceous black shale— south Texas				
Uppermost Jurassic (centered on Tithonian)*	Marine—High Sulfur—Jurassic Marine—Moderately High Sulfur—Jurassic Marine—Moderate Sulfur—Jurassic	Inferred tie to postmature, organic-rich calcareous shales—eastern Gulf of Mexico Oils in Lower Cretaceous reservoirs on Florida shelf where Turonian/Eocene is immature				
Upper Jurassic (Oxfordian)	Carbonate—Elevated Salinity—Jurassic	Tie to postmature, organic-rich carbonates— Mobile Bay				
Triassic (Eagle Mills)	Triassic—Lacustrine	Tie to postmature, organic-rich cores, northeast Texas Paleontology and palynology confirm nonmarine source character				


* "Centered on" means that the source is largely contained within, but may not be restricted to, the designated interval.

Ref. Hood, K. C., L. M. Wenger, O. P. Gross, and S. C. Harrison, 2002, Hydrocarbon systems analysis of the northern Gulf of Mexico: Delineation of hydrocarbon migration pathways using seeps and seismic imaging, in Surface exploration case histories: Applications of geochemistry, magnetics, and remote sensing, D. Schumacher and L. A. LeSchack, eds., AAPG Studies in Geology No. 48 and SEG Geophysical References Series No. 11, p. 25–40.

Ref JEBCO Alliance report, 2004, analysis by GeoMark Research

Sofer plot, 51 oil samples, Caribbean

